Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin-lipid oligomeric assemblies and membrane permeabilization.

نویسندگان

  • Marc Kvansakul
  • Fung T Lay
  • Christopher G Adda
  • Prem K Veneer
  • Amy A Baxter
  • Thanh Kha Phan
  • Ivan K H Poon
  • Mark D Hulett
چکیده

Defensins are cationic antimicrobial peptides that serve as important components of host innate immune defenses, often by targeting cell membranes of pathogens. Oligomerization of defensins has been linked to their antimicrobial activity; however, the molecular basis underpinning this process remains largely unclear. Here we show that the plant defensin NsD7 targets the phospholipid phosphatidic acid (PA) to form oligomeric complexes that permeabilize PA-containing membranes. The crystal structure of the NsD7-PA complex reveals a striking double helix of two right-handed coiled oligomeric defensin fibrils, the assembly of which is dependent upon the interaction with PA at the interface between NsD7 dimers. Using site-directed mutagenesis, we demonstrate that key residues in this PA-binding site are required for PA-mediated NsD7 oligomerization and coil formation, as well as permeabilization of PA-containing liposomes. These data suggest that multiple lipids can be targeted to induce oligomerization of defensins during membrane permeabilization and demonstrate the existence of a "phospholipid code" that identifies target membranes for defensin-mediated attack as part of a first line of defense across multiple species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis.

Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly...

متن کامل

Conserved and cooperative assembly of membrane-bound alpha-helical states of islet amyloid polypeptide.

The conversion of soluble protein into beta-sheet-rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g., Abeta from Alzheimer's disease) reside in close association with a biological membrane. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can le...

متن کامل

Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry

MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show tha...

متن کامل

The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization

HsAFP1, a plant defensin isolated from coral bells (Heuchera sanguinea), is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the memb...

متن کامل

Physiological and pathological cell death have been classifi ed according to morphological criteria into at least three categories: type I cell death or apoptosis; type II cell death or autophagic cell death; and type III cell death

This article is available online at http://www.jlr.org Physiological and pathological cell death have been classifi ed according to morphological criteria into at least three categories: type I cell death or apoptosis; type II cell death or autophagic cell death; and type III cell death or necrosis ( 1, 2 ). Lysosomes were known to be involved in autophagy ( 3, 4 ) and, after the massive ruptur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 40  شماره 

صفحات  -

تاریخ انتشار 2016